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Variational Solution of Integral Equations

BRUCE H. McDONALD, memeer, ieee, MENAHEM FRIEDMAN, axno ALVIN WEXLER, MEMBER, TEEE

Abstract—A variational solution of the Fredholm integral equation
of the first kind resulting from Laplace’s equation with Dirichlet
boundary conditions is discussed. Positive-definiteness of the in-
tegral operator is used to guarantee convergence. The square parallel
plate capacitor is given as an example with several different types of
trial functions. Special singular functions to handle known field
behavior are shown to result in improved accuracy with reduced
computing cost. The air~dielectric interface condition is related to
a general Neumann-mixed boundary condition for which a varia-
tional method with a positive-definite integral operator is presented.
Multiple boundary conditions are handled by mutually constraining
separate variational expressions for each boundary condition. A
T-shaped conductor on a dielectric slab, representative of quasi-static
solutions of microstrip discontinuities, is presented as a three-
dimensional example with multiple boundary conditions. Generally,
it is shown how the finite-element method for the solution of partial
differential equations may be extended to handle integral equation
formulations.

I. INTRODUCTION

CONSIDER the real operator equation

Lu=f (1)
where L is a self-adjoint positive-definite operator, i.e.,
(Lup) = {(u,Lv) (2)
and
: >0, u # 0
(Lu,u)
=0, u = 0. (3)

The pointed brackets denote an inner product of the
functions located on alternate sides of the comma. The
simplest form of inner product is the integration of the
product over the domain of the problem.

In order to conveniently define the above-mentioned
properties of L, the functions in (2) and (3) must satisfy
homogeneous boundary conditions. However, this does
not restrict the variational method to such a limited class
of functions as any problem with inhomogeneous boundary
conditions can be converted into one with homogeneous
boundary conditions and additional source terms in f of

(1) [2, p. 163].
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It is well known [3, pp. 74-95] that for a real self-
adjoint and positive-definite operator, the functional

F = (Luuw) — 2, f) (4)

is minimized by the solution of (1). Tt is understood that
all trial functions u must satisfy any requisite principal
boundary conditions. It is also known that certain other
boundary conditions will be satisfied without intervention.
Hence, these latter ones are called natural boundary
conditions.

In theory, (4) applies only to homogeneous boundary
conditions. In practice, upon specification of the precise
form of L, one can develop, from (4), the funectional that
must actually be used. This functional can then be
made to accomodate inhomogeneous boundary conditions
of both principal and natural types.

As an example of a partial differential equation consider
the Poisson equation

—V-(eV¢) = p (5)

in which the permittivity e is a function of position. By
the use of Green’s identities, it is seen that the differential
operator is both self-adjoint and positive-definite [1]
when ¢ > 0. From (4), with » = ¢, under a procedure
described in [17 for inhomogeneous boundary conditions,
we obtain

F= f/ [e(Ve)? ~ 26p] das dy —~2/C¢h s (6)

for a 2-D region R with boundary C 4 (”. Trial functions
must be restricted to satisfy the principal Dirichlet
condition

#(s) =9g(s), onC’ (7
whereas the natural Neumann condition

o = h(s), on C (8)

anl,

is satisfled automatically in the limit. (A more general
functional for anisotropic media, is given in [57].) Efficient
techniques for the minimization of such functionals is the
subject of the finite-element method [6].

Note that the terms in (6) each correspond to electro-
static energy. If the functional is divided throughout by
2, the integral of the first term corresponds to the energy
calculated entirely from electrostatic potential ¢. The
remainders of the second and the third integrals correspond
to twice the energy calculated by using the real charge
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p(z,y) or the equivalent charge distribution A(s) that
can replace the inhomogeneous Neumann boundary con-
dition. At the exact solution point, F = F..;, which is the
negative of the electrostatic energy of the field. At any
other point, it turns out, from the nature of the operator,
that the first integral increases relative to the other two
so that F > Fui. (The negative sign associated with
Frin is irrelevant.) Thus the energy is minimized at the
solution point.

Frequently, only the stationarity of a variational expres-
sion is employed. For example, if one is interested in the
numerical value of F at the solution point (if, for instance,
F is proportional to system energy, capacitance, ete.),
then if ¢ is a “reasonable” estimate, F will be a “better”
approximation due to the fact that F is stationary about
the solution point. This is true whether F is minimal (be-
cause of L being positive-definite) or merely stationary (if
L is not positive-definite). Little is said about the con-
vergence of F' or the field solution ¢ as the number of
variational parameters is increased when the functional is
only stationary.

But if L is positive-definite, then the Rayleigh-Ritz
approximating procedure will not permit deterioration of
the approximations of Fpi, and ¢ as extra terms are added.
Convergence is guaranteed. Moreover, the method guaran-
tees that the variational coefficients will be adjusted so as
to produce the least value of F and the “best” (in the rms
sense) possible solution of ¢ within the degree of approxi-
mation being used. We shall see, for example, that it is
better to make a guess at the form of an unknown corner
singularity rather than to ignore it altogether. Positive
definiteness and the resulting guarantee of rapid conver-
gence are of the most direct and significant consequence to
computing costs.

The preceding description of the variational method has
centered about the solution of partial differential equa-
tions. Indeed, the variational solution of field problems
has been concerned exclusively with partial differential
equations although integral equation formulations present
some advantages, e.g., reduction of the dimensionality of
problems. Therefore, one can expect storage demands and
perhaps computing costs to be reduced. The obvious
question then is the following: as the principles behind
the variational method, summarized in (1)—(4), are
general and not particular to partial differential equations,
can we not devise a parallel development for integral
equations?

II. ExercY FunNcTioNaLs FOR CERTAIN
InTEGRAL EQUATIONS

The mathematical fact that the Laplacian operator is
positive definite agrees with the physical fact that the
energy (—V%,6) = [[ (V¢)?dzx dy must be expended in
order to establish the field. This energy is calculated from
the electrostatic potential. It is physically obvious, since
the field ¢(z,y) may be deseribed by a charge distribution
over a conductor, that the associated integral operator
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should be positive-definite as well. After all, both mathe-
matical formulations deseribe the model of the same physi-
cal system exactly.

In what follows, we shall not concern ourselves with
particular Green’s functions appropriate to particular
problems. Such Green’s functions are usually impossibly
difficult to find analytically and, if available in certain
cases, they are likely to be expressed as infinite summations
or in other inconvenient forms. We shall replace conduct-
ing boundaries having prescribed potentials with charge
distributions in free space having the same potentials.
Furthermore, we shall replace any interface between
permeable media by a distribution of polarization charge
and consider that charge to exist in unbounded vacuum
[7, pp. 183-1857. In so doing, we solve the equivalent
problem of a charge distribution in free space knowing
that we are at liberty to excise the region of original
interest.

The integral form of the Poisson equation with a spatial
charge distribution ¢(7) is

Ko = [T aairyar s ®

€
in which the integration is performed over the entire free-
space region. Equation (9) defines the integral operator K.
In two-dimensional space the free-space Green’s func-
tion is [8, pp. 115-118]

1
Gr|r)y=—=—In|r—171| (10)
2
and in three dimensions it is
Gl 7)) =
dr|r — 1| (11)

where | r — 7’| is the distance between the observation
and source points, r and r’, respectively.

These Green’s functions possess integrable singularities
which must be carefully handled in numerical computation
[9, pp. 410-4307. Appropriate techniques are described in
Section III.

A. The Dirichlet Problem

The Dirichlet problem arises when we are given, as in
Fig. 1,

o(s) = g(s) (12)
and we are required to find ¢(s). For simplicity only, we
shall consider such specified potentials and the resulting
charges to exist only on surfaces. Thus (9) is written in
the form

Ka(s) = [ 7D s s) ds’ = b(s).  (13)
s €
An equation of the form of (13), with the unknown located
within the integral operation, is known as a Fredholm in-
tegral equation of the first kind.
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Fig. 1. Integral equation—problem configuration and conventions.

Surface S = S;US:

Any charge distribution will satisfy Laplace’s equation
at all points in the entire space not on the boundary S.
However, only one charge distribution will satisfy a
specific set of boundary conditions, i.e., the Fredholm
equation of the first kind has a unique solution [10, pp.
277-3157], [11, pp. 180-1867]. On the surface itself, the
Green’s function is singular as is obvious from (10) and
(11). In addition, the singularities in normal derivative of
potential on alternate sides of the surface are known and
are given by [8, pp. 115-123]

i} o a(s') oG
a% (s) = _—Q(i) + / %2—” (s]s) ds (14a)
and
g a 0
m(@ - - ‘fjo +/ (S)a " (s] &) ds'. (14b)

When ¢(s) is defined over a closed curve S; then as a
convention we use 7i_ when dealing with the interior of the
region and 7%, when concerned with the exterior region. If
S is considered to be made up of two (or more) sections
S; and 8S,, as in Fig. 1, then one can define the normal
directions along each section arbitrarily as long as 7, and
#iz are in the same direction at any point. The arbitrariness
is apparent because if the region is open or if S; and S,
are separated (i.e., ¢(s) is not defined over a closed curve)
then one can presume the curve closed in various ways
that will reverse the normal directions of one section with
respect to the other. The portions that are added to affect
the closure are of no consequence to the integration as the
charge is zero along those paths. Generally then, one can
think of 7#i_ as the normal approaching S and 7. as the
normal leaving S, the direction of travel being arbitrary.

Subtracting (14a) and (14b) one obtains

KL PR 4G
<> P 2 (s) =

(e o

(15)

which is the well-known result describing the discontinuity
of electric flux due to a surface charge distribution. As
well as satisfying Laplace’s equation everywhere not on 8,
due to the nature of the Green’s function any o(s) will
also satisfy this required relationship. The solution, how-
ever, will also satisfy the required boundary conditions.
By differentiating (13) with respect to the unprimed
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variable, it is clear that what (14) does is to add up all
the contributions to d¢/dn at any observation point due
to whatever free or polarization charge exists elsewhere
and then to add to this the discontinuity due to the local
charge.

To solve (13) we propose the new but entirely obvious
strategy of writing the functional (4) withu = ¢, L = K,
and f = ¢. Thus

F = (Ko,o) — 2(0,0) (16)

in which the inner product is defined as an integral over S.
Note that at the solution point, the first term within the
first pair of brackets is the potential ¢(s) as per (13). The
product of potential and charge integrated over the sur-
faces vields the energy of the system. The second inner
product yields twice the energy. From an energy point of
view, the parallel with the partia,l differential equation
approach is exact.

From a numerical point of view, we shall seek a so]uttlon
of the Fredholm integral equation by finding the station-
ary point of F with respect to certain variational param-
eters incorporated in the form of the approximation to
a(s). For the solution to éexist at a stationary point of F,
we must show that K is self-adjoint. To prove that the
functional and hence the error is minimized at a stationary
point we must show that K is positive-definite as well. If
these requirements can be satisfied, then the advantages
of variational methods for partial differential equations
should be available to thé solution of the Fredholm integral
equation of the first kind.

Making use of the symmetry of the Green’s functions in
s and ¢, it is easy to show that

(Ko,r) = (¢,Kr) (17)
which is the definition of the self-adjointness of K.
To prove positive-definiteness, note that
(Ko,o) = / [/ ACHIPTRI: ds] o (s) ds
sL/s €
= [ 6(5)o(s) s (18)
8

By virtue of (13), Green’s first identity applied to the
interior region is

/¢6n——:ds_ /[ (Ve)* dx dy + /[ Ve dudy (19)

interior interior

and over the exterior region

—f¢an+ f/ (Ve)? d dy + /f 6V dz dy.

exterior exterior

(19b)
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The negative sign in (19b) is required because the normal
required for Green’s identity is opposite in direction to
7iy. As Laplace’s equation is satisfied everywhere not on
S, the integrals involving V2¢ vanish. Thus adding (19a)
and (19b) we obtain

L¢[%—%]ds - ff (V)2 dzdy.  (20)

all space

By virtue of (15), (20) becomes

f/ & (Ve)2dx dy = /:s¢uds.

all space

(21)

This development parallels that of Tricomi [4].

Note that the surface integral in (19) is not shown to be
over a closed contour. This is simply in recognition of the
possibility that ¢(s) may not exist continuously over a
closed path if, say, a conducting boundary does not close
upon itself. With this in mind, the integral in (18) is the
same as the one on the right-hand side of (21). Thus
substitution of (21) into (18) yields

Kooy = [[ w(Ve)dedy (22)

all space

which is clearly positive for nonzero ¢. Hence, K is positive
definite, (16) is minimized at the stationary point, and
the rms error is the least attainable for any order of
approximation. The above proof is essentially the same
as one given earlier [127] but with moderate alterations
including a slightly different notation.

The functional is

F= LLG(S)G(S')G(SIS’) ds' ds — ZLa(s)g(s) ds (23)

in integral form. An example will be presented in which
o(s) will be approximated by a set of pulse functions of
arbitrary amplitude and then by a polynomial with un-
known coefficients. These variational parameters will be
computed by finding those values that make F stationary.

B. The Interface Problem

Suppose a surface S divides all of space into two parts.
"To be specific, let one part be air and the other part a
homogeneous dielectric of constant .. It is well known that
a constraint must be placed upon the normal derivatives
on alternate sides of S. If the normal to the surface within
the dieleetrie is 7i_, we have the constraint

3
e (8) = on, (s). (24)

Equation (24) may be viewed as a special case of the
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most general mixed boundary-cum-interface condition
a a
a2 (5) — @2 (s) + ap(s) = h(s)  (25)
an_ on,

where all a; > 0. The developments of this section may
easily be extended to handle (25).

We realize that in the absence of any free charge, the
polarization charge vanishes if the material is not an
electret. However, we shall proceed to develop a functional
for the approximation of polarization charge to satisfy
(24) omitting, for the moment, consideration of the in-
homogeneous part of the equation. In the next section
we shall see how the inhomogeneous part (or forecing
function) finds its way into the statement of the overall
problem.

Substituting (14) into (24), we obtain the operator
equation

4+ 1 > — 1 G
Ko(s) = 272 o(s) + /zr(s') 2 (s]¢) ds’ = O.
€0 € 8 an
(26)
1t is necessary for K to be self-adjoint that
G G
—(s]s) = (s|¢). (27)
mn on

For general curves, the line from s to s’ makes one angle
with the normal to S at s and another angle at s’. There-
fore, (27) holds only for certain specific curves and so K
is not generally self-adjoint.

Define a modified integral operator K’ by multiplying
(26) by the Green’s function and integrating over the
surface. This yields

€

Ko =

+ 1 1
” /SG(sls Yo (s) ds

¢ —1

+ La(s')/‘;G(s]s”)Z—i(s]s') ds ds’ = 0.

€

(28)

If K'e = (Ko,G) = 0, then Ko = 0 if (7 > 0. Hence, a
solution of (28) implies a solution of (26).

Application of Green’s theorem to the two functions
G(s] ") and G(s]s'), with integration in the unprimed
coordinates, shows that

rr G_G ’ _ a__G rr ’
/SG(sls ) an(s]s)ds—[san(s]s YG(s| &) ds (29)

with this factor seen to be symmetric, it is easy to show
that K’ is a symmetric operator.

In order to prove positive-definiteness of K’, note once
again that any assumed ¢ will generate a field that satisfies
(13) and (14) exactly. Through substitution one obtains
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(KIG',U'A> — f M { G(Sl S”) [Gr ’2" 1 0(8)
s © s

+ (e — 1) /Sa(s') %% (s]s" ds'] ds} ds’’

_ / O_(SII)
s ¢

En )
— eo%r (s)]ds} ds

Application of Green’s first identity, as in (20), results in

{ G(s] 8 [eoe,aai (s)
s n_

o ( ) = (8)) o(s) ds. (30)

('m_

(K'o0) = ee, / (V)2 du dy

interior

to [ (Verad =0 31
exterior

and so the modified integral operator K’ is positive-defi-
nite. Again we have energy minimization.

It is not surprising that one is able to obtain a symmetric
and positive-definite form. After all, we began by using
the operator defined by (13)—which satisfies these condi-
tions—and included a constraint upon admissible trial
functions o(s). The addition of a constraint, even with
amendment of the functional, should not destroy sym-
metry and positive-definiteness irrevocably.

The functional, i.e., the first line of (30), may appear
somewhat formidable due to the presence of a triple sur-
face integral. However, no new singularities are introduced
as the derivative of the Green’s function is not singular for
smooth 8. It behaves as
lim 3G (s} &) =0. (32)
sost OTV

The general boundary condition (25) can be formulated
as the Euler equation of a functional for a positive-definite
operator by following essentially the same procedure.

C. Mutually Constrained Finite Elements

Refer again to the Dirichlet problem. For a surface S,
the potential ¢(s) = g(s) is specified and one must find
o(s). Let us arbitrarily consider the surface to be divided
into two parts S; and S,. Given ¢(s1) = g(s1) and ¢(s,) =
g(se), it is required to find ¢ (s:) and ¢ (s.).

Imagine that ¢(s:) is suppressed. (For clarity, think of
the original o(s:) as being known.) With o(s;) = 0, the
boundary condition on S; must be amended to
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a(s0) _/:S 6(;2)

o(s;) within the integral is understood to be the charge
distribution on S, that existed prior to its removal. Also,
the boundary condition on S, must become

0’(82)

g(s2) —fsz "

in order to sustain ¢(s;) = 0. One can then write the
functional

F1=/ 0(81)/ a(s’)

81 s1 €

G(Sl l 82) ds,

(82 l 82’) dSz

G(s| &) dsi dsy

(s2)

_ 2/510(81) [g(sl) a [Szaeo

Because o(s;) = 0, the integral over S: vanishes.

Note that the first double integral in (33) is the one
that contains the variational parameters used to define
o(s1) over one element. They have been isolated within the
functional appropriate to the same element. We indicate
that the functional (33) pertains to element S; by denoting
it F1. We can differentiate with respect to each variational
parameter and then set the result to zero. If, as is the
usual method, the variational parameters enter linearly
into o(s1), then we can differentiate F; with respect to
each of them and set the result to zero. Inspection of (33)
will confirm that we obtain a set of linear equations.

If 6(s;) were actually known, then one could solve for
o(s1). However, o (s,) is not known and so (33) produces
a set of equations expressing o(si) in terms of o(sz).
Following the same procedure for the second element
(and as many more as may be considered), another set of
equations is generated and the whole system may then be
solved simultaneously. It is interesting to note that the
system of equations is identical to that obtained by a
formal finite-element solution of (23) with ¢(s) repre-
sented by ¢ (s1), a(s2), and so on.

This approach can be, but is rarely, used in the finite-
clement solution of partial differential equations. One
could minimize the functional for each of a set of discon-
nected elements separately and only then add the con-
straints between elements. Usually, however, the con-
straints are built in at the outset by forecing continuity
of potential across element boundaries.

We have considered (33) from the viewpoint of a
Dirichlet problem with ¢ (s2) on a boundary whose poten-
tial is specified. Equation (33) is more general than that
and o(s;) may be polarization charge located at the sur-
face of a dielectric, say.

Now we consider the effect of free and/or polarization
charge upon a functional written for an interface S.
Generalizing (26), we obtain

G(Sl l Sz) dSQ:] dSl.

(33)
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ll

¢+ 1 &— 1/
o o) + /$

oG
o(8y)) — (-31] 8') ds/’
€0 €0 an

1

Ko(s)

& — 1

€

(34)

i

- / o) 28 (1] 52 dsy
S2 on
where the right-hand side represents the contribution
from a known o (s.).
Thus we have an inhomogeneous asymmetric operator
equation. Now, making the operator symmetric in the
same way as for (28) we find that

€

1
K’U‘(S1') = _,6_0 [g G(«Sl] 81’)0'(81) dSl

2

i 1/ a(sl”)/ Glst] 82

€ 81 81

G
"5‘;; (31 ' 81“) d81 d81”

_ e’; 1/ o(ss) /Slmsll s/

82

e
M (Sll 82”) ds; dsy’’.

m (35)

We may now write a functional from which we can obtain
a set of equations expressing ¢(s;) in terms of o(s;) as
with the Dirichlet example above.

We have not been able to find a quadratic functional,
defiried over all of S, which produces, upon application of
the formal finite-element method, different types of
boundary conditions on different parts of S. Generally, a
linear combination of the different boundary conditions
results at all points of S, with the speeified boundary con-
ditions being satisfied only with ¢ 3¢/dn = 0 at all points
of s. The method of mutually constrained finite elements,
on the other hand, produces solutions with the specified
boundary conditions, and furthermore degenerates to
identically the formal finite-element method when the
boundary conditions on different parts of S are all of the
same type.

IT1I. ExaMPLES

Several computational difficulties arise when one actu-
ally begins to solve problems with these integral-equation
functionals. Mention has been made of the Green’s
function singularity which, as we will show by example,
niay be treated with only minor inconvenience. There is
also the problem of singular charge distributions which
arise, for instance, at edges and corners of conductors.
Taken by itself, such a singularity poses no major diffi-
culties. However, when charge singularities occur simul-
taneously with Green’s function singularities, very
particular care must be taken. Problems such as these are
not insuperable. As experience is gained in solving them,
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they will tend to appear fairly routine in time.

Two examples are presented. The square parallel plate
capacitor problem is solved using the logarithmic Green’s
function (10) and the surface § is one dimensional. This
example may be compared to the transform method of
Yamashita [18]. The algorithms for integrating the
singular functions are presented in detail. The three-di-
mensional problem is representative of a section of miero-
strip line, with a discontinuity, or part of printed circuit
board. The three-dimensional Laplace Green’s function is
used, hence the solution is quasi-static, and the surface S
is two dimensional.

A. The Square Parallel-Plate Capacitor

Consider two very long thin parallel conducting strips,
as shown in Fig. 3, with a potential difference of 2 V. It
is known [137] that the capacitance of this configuration
in the MKS system is 18.7 pF/m.

By nature of the symmetries of the problem, we may
write the Fredholm equation as

1 ’
1=/ "—(j—) G(z,1] 2,1) do’
0

0

(36)
where the Green’s function is obtained by images from
(10). Here, then, we have
G(zy|,1)
=1 <E<x—x'>2+(y—l)ﬂ][(z+x’)2+(y~1>2]>“2
27— \[(z—2")2+ (y+1)* ][ (e+2") 4 (y+1)7]
(37)

and the Dirichlet functional to solve this problem is, from
(16)

F(o) = lfla(x) /la(x')G(x,l | 2/,1) do’ dz
€ Yo 0

- 2/1.7(@ dr. (38)

It is known [14] that the charge distribution has a
singularity at the edge of the plate which may be written
as

_r

(1— )2 (39)
We consider the charge to be given by a combination

of n pulse functions [Fig. 2(a) ] together with a polynomial

funetion with the inclusion of the singularity (39). Then
we have on the plate

o(x) >~

¢(z) = 1 i (Ui/”‘+h/2 G(z,1}2,1) dx’)

€0 =1 zi—h/2

m LG ’ '
1 / G (z,1 ] 2')1) dx (40)
0

+-2a (1= )"

€0 ;=0
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(a)

Sl

s
b)

(a) Pulse functions in one dimension. (b) Pulse functions in
two dimensions.

MC DONALD et al.:

Fig. 2.

where h = 1/n, n being the number of pulse functions,
and m being the order of the polynomial approximation.
If there are no pulse functions (n = 0), the first term of
(40) is simply not computed. If there is to be no singular
function in the approximation (m = 0), the second term
of (40) is not computed. The ¢, the pulse heights, and the
aj, the polynomial coefficients, are the variational param-
eters. They total n + m.

Substituting (40) into (38) and taking derivatives with
respect to the variational parameters results in the fol-
lowing system of equations:

1 n T th2  papth/2
/ / Ga,1 | ',1) do da
€ ._1 zi—h/2 ¥ TH—h/2
12 G (nl | o)1)
. a-f f———— %) Gt dz = b,
€ .EO ! z—h/2 Y0 (1 - x’)1/2
k=1m (41a)
and
1 Z.4h/2 A1 xlkG(x 1 ]'x' 1)
1 . RAASI A KSR LY WO
€0 ¢Z=:10 2i—h/2 -[; (1 —a’)1” v
1m 1 xk Ya'iQ (a1 | 2 1)
1 d
o5y, (1—w>“2/ a—s) ©%
T ok dx
- = 0. 41b
/o 0o 0---m (41b)

The double integrals in (41) are computed by standard
Gaussian quadrature techniques [157], with special han-
dling of the singularities. There are four singular integrals
to be examined. First of all, the right-hand side of (41b) is

o%
fo G-~ @+ ), a—an®

xk——l

and

L e
/o =2 (42)

Therefore, this integral can be computed analytically.
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The other singular integrals involve the Green’s func-
tion (37) where only one member of the numerator
within the root vanishes.

The following general technique is used for the cornpu-
tation. We assume, for example that I = [,?g(x) dz con-
verges and that g is singular at x = @, and behaves like
h(x) when [ h(z) dx can be calculated analytically. We
then write

b b
1= [ T4 - h@)]d + [ hie) de. (43)
The first integral of (43) no longer is singular and is com-
puted by Gaussian quadrature, with the second integral
obtained analytically.

To handle the Green’s function singularity we subtract
the singular part G.(z|z') from the Green’s function
leaving a regular function G.(x,1]|2’,1). From (37) we
have
(44)

1
Gi(x | 2) =—2—Tln|x—x’

and
G (21]2,1) = G(x,1]21) — G (z]|2). (45)

The first integral of (41a) is singular when ¢ = k. We
perform the integration in two steps, the last step being

f e do.

zi—h[2

(46)

The regular function f(2') is obtained by applying (43),
using (44) and (45), as follows:

zi+-h/2 %, +h/2
f(@") =/ G (z,1 ] 2',1) dx-l—/ Gs(z | o) da.

2i~h|2 Ti=hf2

(47)

The first integral in (47), and that in (46) are com-
puted numerically. The last integral of (47) is obtained
analytically

/bGs(x[x’) dx=*;;1[(x’—a)ln(x’—a) + b -2

‘In (b —~2") +a—0b] (48)
The second integral of (41a) is written
x'ida!
[ L) = s as + 5 [ %
(49)

The regular function f(a’) is obtained as before (47).
The last integral on the left side of (41b) is written
similarly to (49), where here

Yk G(a,1 | 2,1) dx

1@ = [ S (50)
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The singularities at x = 2/, £ = 1, 2’ = 1 are handled
by integrating (50) as

4 ! mk 4 '
1) = [ fg o G120 — 61| #0)]

2 —1 zk—1

ol | - )

) 1 xk dx x’k - 1
+ G.(1,1]2/,1) /0 (I =z " (1 — ")
/IG(xIx’)dr-l-/lM e
: 3 o (1 — )2 :

The first integral of (51) is computed numerically, and
the last integral is obtained analytically

/IM 1[2——ln () + (1 — 212
0

(1—2) o
1— (1—a)w
w{rra am | @

Three experiments are presented with various combina-
tions of pulse functions and polynomial singular functions.
For the configuration of the capacitor we have chosen, the
capacitance is obtained simply as the total charge on the
plate (0,1), or as the negative of the value of the func-
tional (38) at the solution point.

The first experiment is without singular functions
[m = 0in (40)7]. Table I lists the number of pulses used
and shows convergence of the capacitance and the poten-
tial at an arbitrary point in the plane. It should be noted
that convergence is monotonic. ‘

For the second experiment we add one singular function
to the pulse functions [m = 1 in (40)7. Table II shows
that with the one singular function alone, one unknown in
the system-capacitance and field values within one percent

TABLE 1
CapraciTor—PULSES ALONE
e ST o
1 17.72 .1063
2 18.20 .1092
5 18.51 .1110
10 18.62 1117
20 18.68 L1121
30 18.70 1122
40 18.71 .1123
50 18.72 L1124
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TABLE 1I
CaPACITOR—ONE SINGULAR FuncTiON wiTe PuLses
nmni)er number capacitance 40
of pulses of unknowns pr/m 9¢ 9° 10)
0 1 18.57 1115
1 2 18.72 .1123
4 5 18.72 1124
9 10 18.72 21124

are achieved. The capacitance is seen to converge with
the addition of one pulse whereas four pulses are required
before the field converges. This is to be expected, since
the energy method implies faster convergence of the energy
than the field.

For the third experiment the polynomial order m in
(40) is varied with no pulse functions [n = 0 in (40) 7.
The results, presented in Table ITI, are somewhat better
than those obtained in the second experiment (Table II)
largely due to the fact that each trial function here is
singular, containing (1 — z)'? in the denominator. Equi-
potentials are plotted in Fig. 3.

The importance of including special functions to handle
the known behavior of solution singularities cannot be
underestimated. Reduction by factors of 10 and 20 in the
number of unknowns required for a specified accuracy is
apparent from the tables. Two ways of implementing
singular functions have been demonstrated as well. A
separate independent singular funection with its own
variational parameter ean be used, as in the second experi-
ment, or all the trial functions can be made singular, as in
the third experiment. The results we obtained indicate
that if the singularity representation is accurate, better

TABLE III
CapatrrorR—PoOLYNOMIALS WITH SINGULAR TERM
order of number capacitance ¢(_4_Q 10)
polynomial of unknowns pi/m 9
0 1 18.57 L1115
1 2 18.72 <1124
2 3 18.72 L1124
3 4 18.72 <1124

i

$e-1

Fig. 3. Square capacitor problem—cross section at z = 0.
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results are achieved if all the trial functions are made
singular. However, if the singularity is not well known,
it may be better to introduce a separate singular trial
function, which the variational method can use ‘“as
needed” in producing a solution.

B. Microstrip—A Three-Dimensional Problem

~ Consider a square slab (4 X 4 X 1) of homogeneous di-
electric (constant ¢.) lying on an infinite ground conductor
in the z = 0'plane. On top of this slab we place a T-shaped
thin conductor at unit potential as shown in Fig. 4. We
seek the electrostatic field. The problem is representative
of a microstrip line discontinuity, or a printed circuit
board with a TEM quasi-static approximation to the
time-varying fields. .

To obtain the electrostatic solution we will use square
equal area pulse functions for the charge distribution on
the top conductor and the air—dielectric interface, with a
separate singular function defined over the top conductor
to handle known solution singularities. The approach
parallels that used in the second experiment of Section
III-A above.

The symmetries allow us to seek solution in the region
of space y > 0, z > 0, with an amended free-space Green’s
function constructed by images from (11):

G(r| 1) = Gzyzldy,?)

1 1
=E{«x—ww+wy—yv+<w—ﬁ%m

1
T+ )+ =

1
(@—2V+ =)+ G+ D"

1
(@@= g+ YR+ (2 + z’)2)"2}.‘
(53)

We remove the dielectric and place a polarization charge
on the interface surface Sz, and demand that the interface
condition (24) hold on the surfaces of the slab z = 0,
y =2, x =4 and on the top of the dielectric (z = 1)
where the conductor is not present (in each case y > 0).

On the conducting plate surface at y = 1, Sp, we place
a charge equal to the real charge required to maintain the
potential less the polarization charge under the conductor.
That is, we seek the net charge on the conductor.

Alternately, we could have taken Sy to have included
all the surface z = 1, y > 0 and superimposed Sp, in
which case we would havé obtained, on the plate, both
the real charge and the polarization charge. We chose the
former method, simply because fewer unknowns would
result. '
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Ground plane ¢=0

@

condyctor dielecfric
Lt | e
region 2 i region 3
2 :2 —x

()

(a) Microstrip problem configuration.
problem top view.

Fig. 4. (b) Microstrip

Following the method outlined in Section II-C, we
write the Dirichlet functional for the plate surface Sp and
the interface functional for S;. We then differentiate each
functional with respect to the variational parameters and
solve the systems of equations simultaneously.

To represent the charge on the surfaces we use square
equal-area pulse functions [Fig. 2(b)] denoting the ith
pulse region by A;, on both Sp and Sr. Further, we intro-
duce a single singular function f, defined on the plate Sp
to handle edge and corner singularities. We shall discuss
the choice of this singular function shortly. To simplify
the notation, we take the first m pulses to lie on the plate

. and the remaining pulses to lie on the interface. That is, the

pulses on the plate Sp are given by
(54a)

A 1= 1scem
and the pulses on the interface Sy are given by
A, i=m-+1--en. (54b)

Thus in total, we have n pulses and one singular function.
As in the first example, we denote the height. of the pulse
in region A; by o;; and the coefficient of the singular func-
tion by a, giving us n + 1 variational parameters, the
o;, and a. ' '

The potential, then, is given by

=1 €0

an=i?£muww+g4ummuww.

(55)

Substituting (55) into the Dirichlet functional for Sp and
taking derivatives with respect to the pulse height param-
eters on the plate (54a) results in the system of equations
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ig//G(r|r’)ds'ds+§/f

=1 Aj Y Ag ' 0~ A; Y 8p

(NG (r] ') ds’ ds

=[ ds, j=1--+m.

1]

(55a)

Taking the derivative with respect to a results in the
single equation

SZ[ [ el as ds

1—1 € JA;YSsp

+2[ [ roysaeatn ds'ds/=/s £.(7) ds.

€ Jsp Y sp
(55b)

We generate the remaining equations by substituting (55)
into the interface functional for Sz, derived from (35) and
taking derivatives with respect to the pulse height param-
eters o; on the interface, for 7 = m + 1---n. We obtain

o (& —1) G
: G(r|r)y— (r| 1)
k-§+1§ € 7 [A; '/;,- '/A;, (ri on |

- dsds'’ ds' + Z > (€'+1>

k=m-+1 i=m+1 2¢

, hid e — 1
a,-//G(r]r)dsds +k=§+1< - )

Qs T A;

af / fs(r’)/ aer v %8 (1) vy dsas ds
Aj; Y 8Sp Ar on

= 0, j=m-+1---n (55¢)

Equations (55a)—(55¢) now give us a system of n + 1
equations in 7 -+ 1 unknowns which are solved simulta-
ously to obtain the ¢; and a.

The method used to perform the integrations follows
identically the procedure used for the previous example—
Gaussian quadrature with subtraction and addition of
singular terms, as in the discussion regarding (43).
Although the integrations here are clearly more com-
plicated, the algorithms remain straightforward.

Some difficulty is encountered in selecting an appropri-
ate singular function. From the paper by Braunbek [16]
it appears as though at a great distance from a corner, the
edge condition used in the capacitor example above is
appropriate. Near a corner the situation is unclear. Refer-
ring to Fig. 5, where R, is the distance perpendicular from
the edge, and R; is the distance along the edge from the
corner, it appears that we can express, locally,

fi(r) = (56)

RP®2.0)
The function P(R.8) is not known and, as Braunbek
pointed out, the results he obtained were not exactly
solutions of the differential equation. We decided to select
an arbitrary function, continuous over the plate, which
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-P(R5,8)

b(r)~R

Fig. 5. Singular function representation near a corner.

could be integrated fairly easily, and which produced as
nearly constant a potential over the plate as possible. This
criterion is reasonable, since f; is a first approximation to
the exact singular distribution which should produce
exactly a constant potential on the plate.

Referring to the three regions of the plate, in Fig. 4(b),
we chose in region 1

1
fs(x;y) = I:x(2 — x) (2 _ y)]P (57&)
in region 2
1
fi(zy) = [z — 2 — )P (57b)
in region 3
fulag) = : (570)

[4—2(1 -y

Experiments were conducted to determine the optimum
value of P—which we required to be constant. We found
P = } produced the least perturbation of potential over
the plate—of the order of 10-percent variation. Some of
Braunbek’s results can be interpreted to say that P = 1
is valid for a right-angle external corner, of which we have
three. Interestingly enough, the 10-percent variation
occurred mainly near the internal corner, at (2,1,1),
where Braunbek comments that the charge is nonsingular.

In any case, no harm can be done by introducing (57) as
the singular function. If it is of no help, the variational
scheme will merely ignore it. In other computational
schemes, it could make matters worse.

If we take ¢, = 1 we can ignore all charge on the inter-
face Sr since it must vanish. Accordingly, experiments
were done with ¢ = 1 to investigate the convergence
properties of the scheme, and to determine the effect of
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the approximate singular function (57). Since we asked
that the pulses be square, the number of pulses required
is 6N, N = 1,2,3,4, for the plate alone. With N = 4
there are 96 pulse functions on the plate alone, and this is
about the limit, due to ill conditioning of the very dense
matrix we produce.

Table IV shows results for the pulse functions alone.
It is to be noted that convergence is monotonic with the
capacitance value (MKS) being approached from below
as expected. Table V shows the effect of including the
singular function along with the pulses. Clearly, the
singular function helps, but convergence is not nearly as
fast as in the previous problem. The column giving the
percentage of capacitance due to the singular function
tells why: the method relies more upon the pulse func-
tions when they are available than it does on an incorrect
singular function. Clearly, from Table II, it is clear that
the singularity plays 4 more prominent role. Two things
are immediately apparent: inclusion of the singular func-
tion helps; and the singular function is not correct.

The final results presented are from an experiment done
with . = 10. Due to our initial restriction that the pulse
regions be square, the number of pulses required is 16?2,
N = 1,2. With N = 2 we have 64 pulse functions, giving
us a total of 65 unknowns. The next possibility, with
N = 3 gives us 145 unknowns, and the matrix in this
case was found to be very ill conditioned. Thus the results
are presented with N = 2. Fig. 6 shows equipotential
eross sections of the resulting field. These results must be
taken as preliminary, and quite approximate (1- or Z-per-
cent error). From Table V, without the polarization
charges, but with a singular function, it is seen that the
field has not yet converged with N = 2. Selection of &
better singular function, and better finite surface element
representation, using polynomial functions will no doubt
greatly improve things.

) ) TABLE IV .
MicrostriP PROBLEM—¢, = 1—PuisEs ALONE ON PLate
N number of capacitance $(2, 3, 2)
pulses pf
1 6 119.4 .19568
2 24 125.6 2064
3 54 127.8 .2102
4 96 129.2 .2127
. TABLE V
MicrostrIP PrROBLEM—e, = 1—ONE SiNeguLaR FUNCTION 4
PuLses
N nuwber of number of capacitance ¢(2,3,2) % capacitance
pulses unknowns pf from £
0 0 1 124.6 2060 100.0
1 6 7 126.2 .2078 78.2
2 24 25 128.0 .2108 51.3
3 54 s5 129.5 L2131 34.1
4 96_. 97 130.3 L2142 7.8
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Fig. 6. Microstrip problem equipotential plots. (a) Cross section
at y = 0.5. (b) Cross section at y = 1.5. (¢) Cross section at
z = 1.0. (d) Cross section at x = 3.0. .

CoNCLUSIONS ,

This paper has presented three basic concepts as follows.

1) The variational solution of the Fredholm integral
equation of the first kind. ; '

2) The implementation of mutually coupled finite ele-
ments in order to cope with various boundary conditions
within one problem. _ : '

3) The use of free-space Green’s functions rather than
special ones. _

In the pure Dirichlet problem the resulting equations
using subdivision turn out to be those obtained without
element subdivision. However, the method is very impor-
tant as a vehicle for generating functionals, and the result-
ing matrices, for more complicated probléms. .

The method of constraints upon a variational solution
was demonstrated in another context [177]. In that paper,
a free-space problem, posed in terms of a partial differen-
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tial equation, was solved within an arbitrary finite region
with integral constraints placed upon the boundary in
order to represent free space. There is no reason that one
should not solve part of a problem variationally with a
partial differential equation, another part variationally
with an integral equation, and the two mutually con-
strained to yield a unique solution. Thus for any region
the appropriate method can be used.

The application of the variational solution of integral
equations, particularly in terms of coupled functionals, is
an approach that the authors believe to be entirely novel.
It turns out, in the pure Dirichlet problem with a homo-
geneous medium, that the resulting equations are exactly
those obtained by the Galerkin scheme. Therefore, this
equivalence constitutes a proof of convergence of the
Galerkin scheme in this case. It seems unlikely, however,
that the usual form of the Galerkin scheme has ever
been used to generaté equations for problems with inter-
faces and several boundary conditions. However, there
seems to be no reason that the Galerkin method cannot be
similarly formulated.

Of principal importance to future work, the problem of
complex operators is paramount. By the simple act of
converting a Helmholtz differential equation to its integral
form, one transforms a real differential operator (assuming
no losses) into a complex operator due to the term ¢ kT in
the Green’s function.

One then loses a guarantee of convergence, but some
preliminary experience (with complex differential opera~
tors) in lossy media appears quite promising. There is a
possibility that error bounds could be placed upon such
formulations.

As numerical techniques permit the solution of practical
three-dimensional problems, the corner (as distinet from
the edge) field singularity will need a satisfactory resolu-
tion. We suggest that it may be feasible to discover the
form of the local charge distribution through a variational
study. Possibly, as an ancillary program, the computer
could define the form at corner singularities prior to
beginning the main computation.

This paper, which is somewhat imperfect and tentative
in places, is intended as a ‘“door-opener” to further study
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of what the authors believe to be a very promising
approach.
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