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Variational Solution of Integral Equations

BRUCE H. McDONALD, MEMBER, IEEE, MENAHEM FRIEDMAN, AND ALVIN WEXLER, MEMBER, IEEE

Abstracf—A variational solution of the Fredholm integral equation

of the first kind resulting from Laplace% equation with Dirichlet

boundary conditions is discussed. Positive-definiteness of the in-

tegral operator is used to guarantee convergence. The square parallel

plate capacitor is given as an example with several different types of

trial functions. Special singular functions to handle known field

behavior are shown to result in improved accuracy with reduced

comrmting cost. The air-dielectric interface condition is related to

a general Neumann-mixed boundary condition for which a varia-

tional method with a positive-definite integral operator is presented.

Multiple boundary conditions are handled by mutually constraining

separate variational expressions for each boundary condition. A

T-shaped conductor on a dielectric slab, representative of quasi-static

solutions of micro strip discontinuities, is presented as a three-

dimensional example with multiple boundary conditions. Generally,

it is shown how the finite-element method for the solution of partial

differential equations may be extended to handle integral equation

formulations.

I. INTRODUCTION

cONSIDER the real operator equation

Lu=f (1)

where L is a self-adjoint positive-definite operator, i.e.,

(Lu,v) = (u,Lv) (2)

and

‘1
>0, u#o

(Lu,u)

= o, U=o. (3)

The pointed brackets denote an inner product of the

functions located on alternate sides of the comma. The

simplest form of inner product is the integration of the

product over the domain of the problem.

In order to conveniently define the above-mentioned

properties of L, the functions in (2) and (3) must satisfy

homogeneous boundary conditions. However, this does

not restrict the variational method to such a limited class

of functions as any problem with inhomogeneous boundary

conditions can be converted into one with homogeneous

boundary conditions and additional source terms in f of
(1) [2, p. 163].
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It k well known [3, pp. 7495] that for a real self-

adjoint and positive-definite operator, the functional

F = (Lu,u) – 2(U, f ) (4)

is minimized by the solution of (1). It is understood that

all trial functions u must satisfy any requisite principal

boundary conditions. It is also known that certain other

boundary conditions will be satisfied without intervention.

Hence, these latter ones are called natural boundary

conditions.

In theory, (4) applies only to homogeneous boundary

conditions. In practice, upon specification of the precise

form of L, one can develop, from (4), the functional that

must actually be used. This functional can then be

made to accommodate inhomogeneous boundary conditions

of both principal and natural types.

As an example of a partial differential equation consider

the Poisson equation

–V. (rep) = p (5)

in which the permittivit y E is a function of position. By

the use of Green’s identities, it is seen that the differential

operator is both self-adjoint and positive-definite [1]

when e > 0. From (4), with u = +, under a procedure

described in [1] for inhomogeneous boundary conditions,

we obtain

F = // [e(v@J)’ – 24p] dx dy –-2
/

@hd.s (6)
c

R

for a 2-D region R with boundary C + C’. Trial functions

must be restricted to satisfy the principal Dirichlet

condition

4(s) = g(s), on C’ “ (7)

whereas the natural Neumann condition

thj
= h(s),

%*
on C (8)

is satisfied automatically in the limit. (A more general

functional for anisotropic media, is given in [5]. ) Efficient

techniques for the minimization of such functional is the

subject of the finite-element method [6].

Note that the terms in (6) each correspond to electro-

static energy. If the functional is divided throughout by

2, the integral of the first term corresponds to the energy

calculated entirely from electrostatic potential d. The

remainders of the second and the third integrals correspond

to twice the energy calculated by using the real charge
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p(z,y) or the equivalent charge distribution h(s) that

can replace the inhomogeneous Neumann boundary con-

dition. At the exact solution point, F = Fmin which is the

negative of the electrostatic energy of the field. At any

other point, it turns out, from the nature of the operator,

that the first integral increases relative to the other two

so that F > Fmin. (The negative sign associated with

Fmi. is irrelevant.) Thus the energy is mihimized at the

solution point.

Frequently, only the stationarit y of a variational expres-

sion is employed. For example, if one is interested in the

numerical value of F at the solution point (if, for instance,

F is proportional to system energy, capacitance, etc.),

then if 4 is a “reasonable” estimate, F will be a “better”

approximation due to the fact that F is stationary about

the solution point. This is true whether F is minimal (be-

cause of L being positive-definite) or’ merely stationary (if

L is not positive-definite). Little is said about the con-

vergence of F or the field solution 4 as the number of

variational parameters is increased when the functional is

only stationary.

But if L is positive-definite, then the Rayleigh-Ritz

approximating procedure will not permit deterioration of
the approximations of Fmi. and @as extra terms are added.

Convergence is guaranteed. Moreover, the method guaran-

tees that the variational coefficients will be adjusted so as

to produce the least value of F and the “best” (in therms

sense) possible solution of @within the degree of approxi-

mation being used. We shall see, for example, that it is

better to make a guess at the form of an unknown corner

singularity y rather than to ignore it altogether. Positive

definiteness and the resulting guarantee of rapid conver-

gence are of the most direct and significant consequence to

computing costs.

The preceding description of the variational method has

centered about the solution of partial differential equa-

tions. Indeed, the variational solution of field problems

has been concerned exclusively with partial differential

equations although integral equation formulations present

some advantages, e.g., reduction of the dimensionalit y of

problems. Therefore, one can expect storage demands and

perhaps computing costs to be reduced. The obvious

question then is the following: as the principles behind

the variational method, summarized in (1) – (4), are

general and not particular to partial differential equations,

can we not devise a parallel development for integral

equations?

11. ENERGY FUNCTIONAL FOR CERTAIN

INTEGRAL EQUATIONS

The mathematical fact that the Laplacian operator is

positive definite agrees with the physical fact that the

energy (— V2@,@) = JJ (V@) 2 dx d~ must be expended in

order to establish the field. This energy is calculated from

the electrostatic potential. It is physically obvious, since

the field @(x,y) may be described by a charge distribution

over a conductor, that the associated integral operator

should be positive-definite as well. After all, both mathe-

matical formulations describe the model of the same physi-

cal system exactly.

In what follows, we shall not concern ourselves with

particular Green’s functions appropriate to particular

problems. Such Green’s functions are usually impossibly

difficult to find analytically and, if available in certain

cases, they are likely to be expressed as infinite summations

or in other inconvenient forms. We shall replace conduct-

ing boundaries having prescribed potentials with charge

distributions in free space having the same potentials.

Furthermore, we shall replace any interface between

permeable media by a distribution of polarization charge

and consider that charge to exist in unbounded vacuum

[7, pp. 183-185]. In so doing, we solve the equivalent

problem of a charge distribution in free space knowing

that we are at liberty to excise the region of original

interest.

The integral form of the Poisson equation with a spatial

charge distribution u(Y) is

Ka(r) = J* G(r\ r’) dr’ = b(r) (9)

in which the integration is performed over the entire free-

space region. Equation (9) defines the integral operator K.

In two-dimensional space the free-space Green’s func-

tion is [8, pp. 115-118]

G(rlr’)=–-#nlr-r’l (lo)

and in three dimensions it is

1
G(rl r’) = ——

47rlr-r’l
(11)

where \ r — r! I is the distance between the observation

and source points, r and r’, respectively.

These Green’s functions possess integrable singularities

which must be carefully handled in numerical computation

[9, pp. 41&430]. Appropriate techniques are described in

Section III.

A. The Dirichlet Problem

The DirichIet problem arises when we are given, as in

Fig. 1,

f$(?s) = g(s) (12)

and we are required to find ~ (.s). For simplicity only, we

shall consider such specified potentials and the resulting

charges to exist only on surfaces. Thus (9) is written in

the form

K.(s) = ~ ~ G(s1 s’) ds’ = #(s). (13)
s

An equation of the form of (13), with the unknown located

within the integral operation, is known as a Fredholm in-

tegral equation of the first kind.
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Fig. 1. Integral equation—problem confi uration and conventions.
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Any charge distribution wi]l satisfy Laplace’s equation

at all points in the entire space not on the boundary S.

However, only one charge distribution will satisfy a

specific set of boundary conditions, i.e., the Fredholm

equation of the first kind has a unique solution [10, pp.

277–315], [11, pp. 180–186]. On the surface itself, the

Green’s function is singular as is obvious from (10) and

(11). In addition, the singularities in normal derivative of

potential on alternate sides of the surface are known and

are given by [8, pp. 115–123]

~_(s)=$J+\”+g (S] S’) ds’ (14a)
s

and

#+(s) =–”#+/ ~ ~ (S] S’) ds’. (14b)
s

When 4(s) is defined over a closed curve Sj then as a

convention we use k when dealing with the interior of the

region and iih when concerned with the exterior region. If

S is considered to be made up of two (or more) sections
& and St, as in Fig. 1, then one can define the normal

directions along each section arbitrarily as long as iil and

& are in the same direction at any point. The arbitrariness

is apparent because if the region is open or if S1 and SZ

are separated (i.e., @(s) is not defined over a closed curve)

then one can presume the curve closed in various ways

that will reverse the normal directions of one section with

respect to the other. The portions that are added to affect

the closure are of no consequence to the integration as the

charge is zero along those paths. Generally then, one can

think of fi_ as the normal approaching S and ii+ as the

normal leaving S, the direction of travel being arbitrary.

Subtracting (14a) and ( 14b) one obtains

#_ (s) – :+ (s) = ~ (15)

which is the well-known result describing the discontinuity

of electric flux due to a surface charge distribution. As

well as satisfying Laplace’s equation everywhere not on S,

due to the nature of the Green’s function any g(s) will

also satisfy this required relationship. The solution, how-

ever, will also satisfy the required boundary conditions.

By differentiating (13) with respect to the unprimed

variable, it is clear that what (14) does is to add up all

the contributions to a~~t)n at any observation point due

to whatever free or polarization charge exists elsewhere

and then to add to this the discontinuity due to the local

charge.

To solve (13) we propose the new but entirely obvious

strategy of writing the functional (4) with u = u, L == K,

and ~ = q. Thus

F = (Ku,u) – 2(a,g) (16)

in which the inner product is defined as an integral over S.

Note that at the solution point, the first term within the

first pair of brackets is the potential @(s) as per (13). The

product of potential and charge integrated over the sur-

faces yields the energy of the system. The second inner

product yields twice the energy. From an energy point of

view, the parallel with the partial differential equakion

approach is exact;

From a numerical point of view, we shall seek a solultion

of the Fredholm integral equation by finding the station-

ary point of F with respect to certain variational param-

eters incorporated in the form of the approximation n to

u(s). For the sol,ution to exist at a stationary point of F,

we must show that K is self-adjoint. To prove that the

functional and hence the error is minimized at a stationary

point we must show that K is positive-definite as welll. If

these requirements can be satisfied, then the advantages

of variational methods for partial dhlerential equations

should be available to the solution of the Fredholm integral

equation of the first kind.

Making use of the symmetry of the Green’s functions in

s and s’, it is easy to show that

which is the definition of the self-adjointness of K.

To prove positiv+definiteness, note that

(Ka,r) =
[[/

U(s’)

1
—G($ ] S’) ds’ u(S) ds

ss~~

= / (b(,) a(S) ds. (18)
Js

By virtue of (13), Green’s first identity applied to the

interior region is

interior inter ior

and over the exterior region

exterior exterior

(1.9b)
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The negative sign in ( 19b) is required because the normal

required for Green’s identity is opposite in direction to

ii+. As Laplace’s equation is satisfied everywhere not on

A’, the integrals involving V’@ vanish. Thus adding (19a)

and ( 19b) we obtain

all space

By vh%ue of (15), (20) becomes

//
%(v+)zdzdg =

/
qxsds.

s

all space

This development parallels that of Tricomi r41.

(20)

(21)

Note that the surface integral in (19) is n;t ~hown to be

over a closed contour. This is simply in recognition of the

possibility that u(s) may not exist continuously over a

closed path if, say, a conducting boundary does not close

upon itself. With this in mind, the integral in (18) is the

same as the one on the right-hand side of (21). Thus

substitution of (21) into (18) yields

(22)

all space

which is clearly positive for nonzero 4. Hence, K is positive

definite, (16) is minimized at the stationary point, and

the rms error is the least attainable for any order of

approximation. The above proof is essentially the same

as one given earlier [12] but with moderate alterations

including a slightly different notation.

The functional is

most general mixed boundary-cum-interface condition

al #_ (s) – cw~+ (s) + a~+(.s) = h(s) (25)

where all ai ~ O. The developments of this section may

easily be extended to handle (25).

We realize that in the absence of any free charge, the

polarization charge vanishes if the material is not an

electret. However, we shall proceed to develop a functional

for the approximation of polarization charge to satisfy

(24) omitting, for the moment, consideration of the in-

homogeneous part of the equation. In the next section

we shall see how the inhomogeneous part (or forcing

function) finds its way into the statement of the overall

problem.

Substituting (14) into (24), we obtain the operator

equation

Ku(s) =
6,+1 G-l
—u(s) + —

260 !
u(s’) }: (S ] S’) ds’ = O.

co s

(26)

It is necessary for K to be self-adjoint that

:(s]s’) =~(sls’). (27)

For general curves, the line from s to s’ makes one angle

with the normal to 8 at s and another angle at s’. There-

fore, (27) holds only for certain specific curves and so K

is not generally self-adj oint.

Define a modified integral operator K’ by multiplying

(26) by the Green’s function and integrating over the

surface. This yields

F=
H /

K’u = ~ ~ G(, I S“)17(S) ds
u(s)u(s’)G(s I S’) ds’ ds — 2 a(s)g(s) ds (23) s

Ss s

in integral form. An example will be presented in which

u (.s) will be approximated by a set of pulse functions of

arbitrary amplitude and then by a polynomial with un-

known coefficients. These variational parameters will be

computed by finding those values that make F stationary.

B. The Interface Problem

Suppose a surface S divides all of space into two parts.
To be specific, let one part be air and the other part a

homogeneous dielectric of constant e,. It is well known that

a constraint must be placed upon the normal derivatives

on alternate sides of S. If the normal to the surface within

the dielectric is ti-, we have the constraint

G:(s) =%).
dn+

(24)

Equation (24) may be viewed as a special case of the

++&ds9~ G(s ] S“) ~ (S\ S’) ds ds’ = O.

(28)

If K’u = (K.,G) = O, then KU = O if G # 0. Hence, a

solution of (28) implies a solution of (26).

Application of Green’s theorem to the two functions

G (s I s“) and G (s I ‘s’), with integration in the unprimed

coordinates, shows that

/
G(s [ S“) ;: (S] S’) ds =

/
s ~ (S ] S“)G(S I S’) ds (29)

s

with this factor seen to be symmetric, it is easy to show

that K’ is a symmetric operator.

In order to prove positive-definiteness of K’, note once

again that any assumed a will generate a field that satisfies

(13) and (14) exactly. Through substitution one obtains
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+ (.% – 1) f u(s’) a:(S I s’) ds’1}ds ds”

=l.(::) {~ s

[
G(s I S“) ,.., ~ (S)

&j

1}
co — (S) ds d.s’t

dn+

——/( )CO G #_ (s) — ;+ (S) +(S) ds. (30)
s

Application of Green’s first identity, as in (20), results in

(K’a,6) = ,,,,
!/

(V+)2 dx dy

inter ior

exter im

and so the modified integral operator K’ is positive-defi-

nite. Again we have energy minimization.

It is not surprising that one is able to obtain a symmetric

and positive-definite form. After all, we began by using

the operator defined by (13) —which satisfies these condi

tions—and included a constraint upon admissible trial

functions a(s). The addition of a constraint, even with

amendment of the functional, should not destroy sym-

metry and positive-definiteness irrevocable y.

The functional, i.e., the first line of (30), may appear

somewhat formidable due to the presence of a triple sur-

face integral. However, no new singularities are introduced

as the derivative of the Green’s function is not singular for

smooth h’. It behaves as

lim g (.s I .s’) = O.
.+., an

(32)

The general boundary condition (25) can be formulated

as the Euler equation of a functional for a positive-definite

operator by foflowing essentially the same procedure.

C. Mutually Constrained Finite Elements

Refer again to the Dirichlet problem. For a surface S,

the potential 4(s) = g(s) is specified and one must find

u(s). Let us arbitrarily consider the surface to be divided

into two parts SI and S2. Given@ (s1) = g (s1) and 4 (s2) =

g (s,), it is required to find a (s,) and u (s,).
Imagine that a (.s,) is suppressed. (For clarity, think of

the original a (s,) as being known.) With a (s2) = O, the

boundary condition on S1 must be amended to

a (s2) within the integral is understood to be the charge

distribution on S, that existed prior to its removal. Also,,

the boundary condition on Sj must become

/

W(S2’)
!l (s2) – — G (S2 ] S,’) dsz’

S2 @

in order to sustain u (sa) = O. One can then write the

functional

(33)

Because u (s2) = O, the integral over .!z vanishes.

Note that the first double integral in (33) is the one

that contains the variational parameters used to clefine

u (sl) over one element. They have been isolated within the

functional appropriate to the same element. We inclicate

that the functional (33) pertains to element&by denoting

it F1. We can differentiate with respect to each variational

parameter and then set the result to zero. If, as is the

usual method, the variational parameters enter linearly

into a (sl), then we can differentiate FI with respect to

each of them and set the result to zero. Inspection of (33)

will confirm that we obtain a set of linear equations.

If u (s2) were actually known, then one could solve for

u (s1). However, u (s2) is not known and so (33) produces

a set of equations expressing u (s1) in terms of o (s2).

Following the same procedure for the second element

(and as many more as may be considered), another jset of

equations is generated and the whole sy~tem may then be

solved simultaneously. It is interesting to note that the

system of equations is identical to that obtained by at

formal finite-element solution of (23) with a(s) repre-

sented by u (s1), u(st), and so on.

This approach can be, but is rarely, used in the fiiite-

element solution of partial differential equations. One

could minimize the functional for each of a set of discon-

nected elements separately and only then add the con-

straints between elements. Usually, however, the con-

straints are built in at the outset by forcing continuity

of potential across element boundaries.

We have considered (33) from the viewpoint of a

DYlchlet problem with a (s2) on a boundary whose poten-

tial is specified. Equation (33) is more general than that,

and u (s2) may be polarization charge located at the sur-

face of a dielectric, say.
Now we consider the effect of free and/or polarization

charge upon a functional written for an interface S1.

Generalizing (26), we obtain
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%+1

!

CT—l ‘
Km(s) =~u(s)+— u (s1’) ~ (s, I s,’) ds,’

fo SI

6?.-1

/

dG
._— a(s2’) ~n (.s1 [ 52’) dsz’ (34)

co S2

where the right-hand side represents the contribution

from a known u (s2).

Thus we have an inhomogeneous asymmetric operator

equation. Now, making the operator symmetric in the

same way as for (28) we find that

6,+1
K’a(!sl’) = —

/
G(s1 I SI’)U(SI) dsl

2E0 S1

++@”) p ‘“)

“~(.s, I SI”) ds, ds,”

‘~ (SI] S2”)dsl d.w”. (35)

We may now write a functional from which we can obtain

a set of equations expressing u (sl) in terms of a (s2) as

with the Dirichlet example above.

We have not been able to find a quadratic functional,

defined over all of S, which produces, upon application of

the formal finite-element method, different types of

boundary conditions on different parts of S. Generally, a

lineiw combination of the different boundary conditions

results at all points of S, with the specified boundary con-

ditions being satisfied only with + t@/&z = O at all points

of i. The method of mutually constrained finite elements,
on the other hand, produces solutions with the specified

boundary conditions, and furthermore degenerates to

identically the formal finite-element method when the

botmdary conditions on different parts of S are all of the

same type.

III. EXAMPLES

Several computational difficulties arise when one actu-

ally begins to solve problems with these integral-equation

ftinctionals. Mention has been made of the Green’s

ftinction singularity which, as we will show by example,

may be treated with only minor inconvenience. There is

also the problem of singular charge distributions which

arise, for instance, at edges and corners of conductors.

Taken by itself, such a singularity poses no major diffi-

culties. However, when charge singularities occur simul-

taneously with Green’s function singularities, very

particular care must be taken. Problems such as these are

not insuperable. As experience is gained in solving them,

they will tend to appear fairly routine in time.

TWO examples are presented. The square parallel plate

capacitor problem is solved using the logarithmic Green’s

function (10) and the surface S is one dimensional. This

example may be compared to the transform method of

Yamashita [18]. The algorithms for integrating the

singular functions are presented in detail. The three-di-

mensional problem is representative of a section of micro-

strip line, with a discontinuity, or part of printed circuit

board. The three-dimensional Laplace Green’s function is

used, hence the solution is quasi-static, and the surface S

is two dimensional.

A. The Square Parallel-Plate Capacitor

Consider two very long thin parallel conducting strips,

as shown in Fig. 3, with a potential difference of 2 V. It

is known [13] that the capacitance of this configuration

in the MKS system is 18.7 pF/m.

By nature of the symmetries of the problem, we may

write the Fredholm equation as

1=
/

1U(x’)
~ G(z,l ] *’,1) dz’

o
(36)

where the Green’s function is obtained by images from

(10). Here, then, we have

=~ln
(

[(z–z’)’+ (y–1)’][(z+z’)z+ (y–l)z] ‘/2

[( X–Z’)2+ (y+l)’][(z+%’)z+ (!J+1)2] )

(37)

and the Dirichlet functional to solve this problem is, from

(16)

F(u) = :/1a(z) f u(z’)G(z,l I z’,1) dx’ dz
.s0 o 0

!
1

–2 a(z) a%. (38)
o

It is known [14] that the charge distribution has a

singularity at the edge of the plate which may be written

as

1

‘(z) = (1 – $)’/’” (39)

We consider the charge to be given by a combination

of n pulse functions [Fig. 2(a)] together with a polynomial

function with the inclusion of the singularity (39). Then

we have on the plate
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lbH1-_
(a)

m
(b)

Fig.2. (a) Pulse functions inonedlmension. (b) Pulse functionsin
two dimensions.

where h = 1/n, n being the number of pulse functions,

and m being the order of the polynomial approximation.

If there are no pulse functions (n = O), the first term of

(40) is simply not computed. If there is to be no singular

function in the approximation (m = O), the second term

of (40) is not computed. The m~,the pulse heights, and the

aj, the polynomial coefficients, are the variational param-

eters. They total n + m.

Substituting (40) into (38) and taking derivatives with

respect to the variational parameters results in the fol-

lowing system of equations:

k = l,n (41a)

and

[

1 Zk dx.
~ (1 – Z)’/’

lc=O...m. (41b)

The double integrals in (41) are computed by standard

Gaussian quadrature techniques [15], with special han-

dling of the singularities. There are four singular integrals

to be examined. First of all, the right-hand side of (41b) is

and

J
1 lit

= 2.
~ (1 — Z)l”

(42)

Therefore, this integral can be computed analytically.

The other singular integrals involve the Green’s func-

tion (37) where only one member of the numerator

within the root vanishes.

The following general technique is used for the comput-

ation. We assume, for example that 1 = j_a~g (x) dx con-

verges and that o is singular at r = a, and behaves like

h(z) when f) h (z) dx can be calculated analytically. We

then write

I=
! ; [g(~) – h(x)]dx + ~bh(x) dx. (43)

a

The first integral of (43) no longer is singular and is com-

puted by Gaussian quadrature, with the second integral

obtained analytically.

To handle the Green’s function singularity y we subtract

the singular part G. (z I x’) from

leaving a regular function G, (z, 1

have

G.(z I z’) = – -&ln

and

the Green’s function

x’,1). From (37)1 we

Z—z’l (44)

Gr(x,l I z’,1) = G(z,l ! z’,1) – G,(z ) z’). (45)

The first integral of (41a) is singular when i = k. We

perform the integration in two steps, the last step being

/

Z,-th12

$(d) dx’. (46)
zi—h/2

The regular function j(d) is obtained by applying (43),

using (44) and (45), as follows:

Z,+h/2

j-(x’) = /“+”2 G,(z,l I z’,1) dx +
/

G,(x I i) dx.
mi—h/2 z{-hl’

(47)

The first integral in (47), and that in (46) are com-

puted numerically. The last integral of (47) is obtained

analytically

/

b

G,(x I z’) dx = ~ [(z’ – a) in (x’ – a) + (b – x’)
a

.ln (b – x’) + a – b]. (48)

The second integral of (41a) is written

(49)

The regular function $(x’) is obtained as before (4:7).

The last integral on the left side of (41b) is written

similarly to (49), where here

1 d@’(x,l I x’,1) dx .
$(X’) = ~ (~ _ @l/2 ‘(50)
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The singularities at z = o!, z = 1, x’ = 1 are handled

by integrating (5o) as

f(x’) =~’{(l:kx)l/2[G,(z,1 ] z’,1) – G,(l,l I z’,1)]

[

~k—l ~fk _ 1

+ G,(x I z’) 11(l–z)’/2–(l– 2?)’/’ ‘x

The first integral of (51) is computed numerically, and

the last integral is obtained analytically

/

lG. (z ] d) dx

[
A 2 – in (z’) + (1 – ZY)112

o (1 – 2)1/’ = w

.ln
{

1 – (1 – Z’)1/’

}11 + (1 – Z’)11, “
(52)

Three experiments are presented with various combina-

tions of pulse functions and polynomial singular functions.

For the configuration of the capacitor we have chosen, the

capacitance is obtained sirnpl y as the total charge on the

plate (O,1), or as the negative of the value of the func-

tional (38) at the solution point.

The first experiment is without singtdar functions

[m = O in (40) ]. Table I lists the number of pulses used

and shows convergence of the capacitance and the poten-

tial at an arbitrary point in the plane. It should be noted

that convergence is monotonic.

For the second experiment we add one singular function

to the pulse functions [m = 1 in (40)]. Table II shows

that with the one singular function alone, one unknown in

the system-capacitance and field values within one percent

TABLE I
CAPACITOR-PULSES ALONE

number capacitance

of pulses pflm
@ , 10)

1 17.72 .1063

2 18.20 .1092

5 18.51 .1110

10 18.62 .1117

20 18.68 .1121

30 18.70 .1122

40 18.71 .1123

50 18.72 .1124

TABLE II
CAPACITOR-ONE SINGULAR FUNCTION WITH PULSES

number number capacitance
of pulses of unknowns $ (+, 10)

pfflo

o 1 18.57 .1115

1 2. 18.72 .1123

4 5 18.72 .1124

9 10 18072 .1124

are achieved. The capacitance is seen to converge with

the addition of one pulse whereas four pulses are required

before the field converges. This is to be expected, since

the energy method implies faster convergence of the energy

than the field.

For the third experiment the polynomial order m in

(40) is varied with no pulse functions [n = O in (40)].

The results, presented in Table III, are somewhat better

than those obtained in the second experiment (Table II)

largely due to the fact that each trial function here is

singular, containing (1 — x)112 in the denominator. Equi-

potentials are plotted in Fig. 3.

The importance of including special functions to handle

the known behavior of solution singularities cannot be

underestimated. Reduction by factors of 10 and 20 in the

number of unknowns required for a specified accuracy is

apparent from the tables. Two ways of implementing

singular functions have been demonstrated as well. A

separate independent singular function with its own

variational parameter can be used, as in the second experi-

ment, or all the trial functions can be made singular, as in

the third experiment. The results we obtained indicate

that if the singularity y representation is accurate, better

TABLE III
CAPACITOR—POLYNOMIALS WITH SINGULAR TERM

order of number capacitance

polynomial of Inlknowns pf/m
$(% , 10)

o 1 18.57 .1115

1 2 18.72 .1124

2 3 18.72 .1124

3 4 18.72 .1124

Y

-liiiiM
-——--.—1

.#=+)
08
06
04
02
z

x

d..- 1

Fig. 3. Square capacitor problem—cross section at z = O.
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results are achieved if all the trial functions are made

singular. However, if the singularity is not well known,

it may be better to introduce a separate singular trial

function, which the variational method can use “as

needed” in producing a solution.

B. Microstrip—A Three-Dimensional Problem

Consider a square slab (4 X 4 X 1) of homogeneous di-

electric (constant c,) lying on an infinite ground conductor

in the z = O plane. On top of this slab we place a T-shaped

thin conductor at unit potential as shown in Fig. 4. We

seek the electrostatic field. The problem is representative

of a microstrip line discontinuity y, or a printed circuit

board with a TEM quasi-static approximation to the

time-varying fields.

To obtain the electrostatic solution we will use square

equal area pulse functions for the charge distribution on

the top conductor and the air–dielectric interface, with a

separate singular function defined over the top conductor

to handle known solution singularities. The approach

parallels that used in the second experiment of Section

III-A above.

The symetries allow us to seek solution in the region

of space y 2 0, z 2 0, with an amended free-space Green’s

function constructed by images from (11):

G(r I r’) = G(x,y,z I x’,Y’,z’)

1

[

1——
17 ((z – $’)2 + (y – y’)z + (z – Z’)2)1’2

1

+ ((z – x’)’ + (y + y’)’ + (z – Z’)Z)’/’

1—
((z – x’)’ + (y – y’)z + (z+ 2’)’)’/’

1—
}((z – Z’)2 + (y + y’)z + (z + Z’)2)’1’ “

(53)

We remove the dielectric and place a polarization charge

on the interface surface 81, and demand that the interface

condition (24) hold on the surfaces of the slab x = O,

y = 2, x = 4 and on the top of the dielectric (z = 1)

where the conductor is not present (in each case y z O).

On the conducting plate surface at y = 1, 8P, we place

a charge equal to the real charge required to maintain the

potential less the polarization charge under the conductor.

That is, we seek the net charge on the conductor.

Alternately, we could have taken 81 to have included

all the surface z = 1, y > 0 and superimposed SP, in

which case we would have obtained, on the plate, both

the real charge and the polarization charge. We chose the

former method, simply because fewer unknowns would

result.

L~ie,=,ric

Ground plme += O

(a)

I

2

I

I region 2 ~ region 3 I
1

z 2 -4X
(b)

Fig. 4. (a) Microstrip problem configuration. (b) Microstrip
problem top view.

Following the method outlined in Section II-C, we

write the Dirichlet functional for the plate surface S,p and

the interface functional for S1. We then differentiate each

functional with respect to the variational parameters and

solve the systems of equations simultaneously.

To represent the charge on the surfaces we use square

equal-area pulse functions [Fig. 2(b) ] denoting the ith

pulse region by A;, on both SP and ST., Further, we j.ntro-

duce a single singular function j. defined on the plate SF

to handle edge and corner singularities. We shall discuss

the choice of this singular function shortly. To simplify

the notation, we take the first m pulses to lie on the plate

and the remaining pulses to lie on the interface. That is, the

pulses on the plate SP are given by

At, i=l”””m (54a)

and the pulses on the interface SI are given by

A<, i=m+l. ..n. (54b)

Thus in total, we have n pulses and one singular function.

As in the first example, we denote the height, of the pulse

in region Ai by ai> and the coefficient of the singular func-

tion by a, giving us n + 1 variational parameters, the

ui, and a.

The potential, then, is given by

(55)

Substituting (55) into the Dirkhlet functional for Sp and

taking derivatives with respect to the pulse height param-

eters on the plate (54a) results in the system of equations
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Taking the derivative with respect to a results in the

single equation

+ ~/’,/~p~s(r)A(OG(TI r’) ds’ds’= ~
f,(r) ds.

Sp

(55b)

We generate the remaining equations by substituting (55)

into the interface functional for SI, derived from (35) and

taking derivatives with respect to the pulse height param-

eters ai on the interface, for i = m + 1”” on. We obtain

~&’-l)
Ci

///
G(rl r“) ~ (rl r’)

JAn+l &l co A; Ai Ah

()
.dsds’’ds’+ ~ ~ ~

k=m+l .i=m+l

H ()

6,—1
. ~i G(r] r’) dsds’+ ~ —

A< Aj k=m+l El)

“a~i~pf(r’)~kG(r I r“) ~n (r I r’) ds ds’ ds”

= o, j=m+l... ~. (55C)

Equations (55a)– (55c) now give us a system of n + 1

equations in n + 1 unknowns which are solved simulta-

ously to obtain the u~ and a.
The method used to perform the integrations follows

identically the procedure used for the previous example

Gaussian quadrature with subtraction and addition of

singular terms, as in the discussion regarding (43).
Although the integrations here are clearly more com-

plicated, the algorithms remain straightforward.
Some difficulty is encountered in selecting an appropri-

ate singular function. From the paper by Braunbek [16]

it appears as though at ~ great distance from a corner, the

edge condition used in the capacitor example above is

appropriate. Near a corner the situation is unclear. Refer-

ring to Fig. 5, where RI is the distance perpendicular from

the edge, and Rz is the distance along the edge from the

corner, it appears that we can express, locally,

f.(r) = *. (56)

The function P(R.@) is not known and, as Braunbek

pointed out, the results he obtained were not exactly

solutions of the differential equation. We decided to select

an arbitrary function, continuous over the plate, which

Fig. 5. Singular function representation near a corner.

could be inteaated fairly easily, and which produced as

nearly constant a potential over the plate as possible. This

criterion is reasonable, since f. is a first approximation to

the exact singular distribution which should produce

exactly a constant potential on the plate.

Referring to the three regions of the plate, in Fig. 4(b),

we chose in region 1

1

‘s(z’y) = [Z(2 – z) (2 – y)]p
(57a)

in region 2

1

“(Z’Y) = [x(3 – x – y)]p

in region 3

1

“(*’Y) = [(4 – Z)(I – y)]p”

(57b)

(57C)

Experiments were conducted to determine the optimum

value of P—which we required to be constant. We found
P = ~ produced the least perturbation of potential over

the plate--of the order of 10-percent variation. Some of

Braunbek’s results can be interpreted to say that P = ~

is valid for a right-angle external corner, of which we have

three. Interestingly enough, the 10-percent variation

occurred mainly near the internal corner, at (2,1,1),

where Braunbek comments that the charge is nonsingular.

In any case, no harm can be done by Aroduc~ng (57) as

the singular function. If it is of no help, the variational

scheme will merely ignore it. In other computational

schemes, it could make matters worse.

If we take e, = 1 we can ignore all charge on the inter-

face S1 since it must vanish. Accordingly, experiments

were done with .s, = 1 to investigate the convergence

properties of the scheme, and to determine the effect of
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the approximate singular function (57). Since we asked

that the pulses be square, the number of pulses required

is 6N2, N = 1,2,3,4, for the plate alone. With N = 4

there are 96 pulse functions on the plate alone, and this is

about the limit, due to ill conditioning of the very dense x

matrix we produce.
o 2 4

Table IV shows results for the pulse /unctions alone.
(a)

It is to be noted that convergence is monotonic with the

capacitance value (MKS) being approached from below

as expected. Table V shows the efiect of including the

singular function along with the pulses. Clearly, the

singular function helps, but convergence is not nearly as

fast as in the previous problem. The column giving the
o 4 x

(b)

percentage of capacitance due to the singular function

tells why: the method relies more upon the pulse func-

tions when they are available than it does on an incorrect

singular function. Cle~rly, from Table II, it is clear that

the singularity plays a more prominent role. Two things

are immediately apparent: inclusion of the singular func-

tion helps; and the singular function is not correct.

The final results presented are from an experiment done

with c. = 10. Due to our initial restriction that the pulse

regions be square, the number of pulses required is 16NZ,

N = 1,2. With N = 2 we have 64 pulse functions, giving

us a total of 65 unknowns. The next possibility, with Y

N = 3 gives us 145 unknowns, and the matrix in this (c)
case was found to “be very ill conditioned. Thus the results

are presented with N = 2. Fig. 6 shows equipotential

cross sections of the resulting field. These results must be

taken as preliminary, and quite approximate (1- or 2-per-

cent error). From Table V, without the polarization

charges, but with a singular function, it is seen that the

field has not yet converged with N = 2. Selection of a

better singular function, and better finite surface element

representation, using polynomial functions till no doubt

greatly improve things. o I 2 Y

(d)

TABLE IV Fig. 6. Microstrip problem equipotential plots. (a) Cross section
MICROSTRIP PROBLEM—-+. = I—PULSES ALONE ON PLATE at v = 0.5. (b) Cross section at y = 1.5. (c) Cross section at

N number of capacitance 0(2, 3> 2)
o = 1.0. (d) cross section at x = 3.o.

pulses pf

CONCLUSIONS

1 6 119.4 .1968

2 24 125.6
Thk paper has presented three basic concepts as follows.

.2064
1) The variational solution of the Fredholm integral

~. 54 127. S .2102
equation of the first kind.

4 96 129.2 .2127 2) The implementation of mutually coupled finite ele-

ments in order to cope with various boundary conditions

TABLE V
within one problem.

MICROSTRIP PROBLEM—E,=p&lS~E SINGULAR FUNCTION + 3) The use of free-space Green’s functions rather than

speciai ones.

N number of number of capacitance 4(2, 3,2) % capacitance In the pure -Dirichlet problem the resulting equations
puises unknowns pf from f

s

o

using subdivision turn out to be those obtained without
o 1 12&.6 .2060 100.0 element subdivkion, However, the method k very hnpor-

1 6 7 126.2 .2078 78.2 tant as a vehicle for generating functional, and the result-

2 24 25 128.0 .2108 51.3 ing matrices, for more complicated problems.

3 54 55 129.5 .2131 34.1 The method of constraints upon a variational solution

4 96. 97 130.3 .2142 7.8
was demonstrated in another context [17]. In that paper,

a free-space problem, posed in terms of & partial differen-
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tial equation, was solved within an arbitrary iinite region

with integral constraints placed upon the boundary in

order to represent free space. There is no reason that one

should not solve part of a problem variationally with a

partial differential equation, another part variationally

with an integral equation, and the two mutually con-

strained to yield a unique solution. Thus for any region

the appropriate method can be used.

The application of the variational solution of integral

equations, particularly in terms of coupled functional, is

an approach that the authors believe to be entirely novel.

It turns out, in the pure Dhichlet problem with a homo-

geneous medium, that the resulting equations are exactly

those obtained by the Galerkin scheme. Therefore, this

equivalence constitutes a proof of convergence of the

Galerkin scheme in this case. It seems unlikely, however,

that the usual form of the Galerkln scheme has ever

been used to generate equations for problems with inter-

faces and several boundary conditions. However, there

seems to be no reason that the Galerkin method cannot be

similarly formulated.

Of principal importance to future work, the problem of

complex operators is paramount. By the simple act of

converting a Helmholtz differential equation to its integral

form, one transforms a real differential operator (assuming

no losses) into a complex operator due to the term d“k”r in

the G~een’s function.

One then loses a guarantee of Convergence, but some

preliminary experience (with complex differential opera-

tors) in lossy media appears quite promisiig. There is a

possibility that error bounds could be placed upon such

formulations.

As numerical techniques permit the solution of practical

three-dimensional problems, the corner (as distinct from

the edge) field singularity will need a satisfactory resolu-

tion. We suggest that it may be feasible to discover the

form of the local charge distribution through a variational

study. Possibly, as an ancillary program, the computer

could define the form at corner singularities prior to

beginning the main computation.

Tl& paper, which is somewhat imperfect and tentative

in places, is intended as a “door-opener” to further study

of what the authors believe to be a very promising

approach.
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